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Abstract
With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have

emerged in the application of nanomedicine in recent years. However, the potential adverse

health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epi-

gallocatechin-3-gallate (EGCG) on the toxicity induced by Ni NPs in mouse epidermal cell

line (JB6 cell). MTT assay showed that Ni NPs induced cytotoxicity in a dose-dependent

manner while EGCG exerted a certain inhibition on the toxicity. Additionally, EGCG could

reduce the apoptotic cell number and the level of reactive oxygen species (ROS) in JB6

cells induced by Ni NPs. Furthermore, we observed that EGCG could down-regulate Ni

NPs-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) activation in JB6

cells, which has been shown to play pivotal roles in tumor initiation, promotion and progres-

sion. Western blot indicated that EGCG could alleviate the toxicity of Ni NPs through regu-

lating protein changes in MAPK signaling pathways. In summary, our results suggest that

careful evaluation on the potential health effects of Ni NPs is necessary before being widely

used in the field of nanomedicine. Inhibition of EGCG on Ni NPs-induced cytotoxicity in JB6

cells may be through the MAPK signaling pathways suggesting that EGCGmight be useful

in preventing the toxicity of Ni NPs.

Introduction
NPs refer to particles with one dimension that measure 100 nm or less [1]. With the fast devel-
opment in nanotechnology, Ni NPs are widely used in hydrogen storages, chemical catalysts,
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ceramic capacitors, sensor and conductive paints, and nanomedicine over the past decade [2].
However, public concerns have been aroused on the adverse effects of Ni NPs to the environ-
ment and human health [3]. Skin allergies, lung fibrosis, lung cancer and hepatotoxicity dam-
age are the common adverse health effects of Ni fine particle exposure, which had been
demonstrated by both in vitro and in vivo experiments and limited epidemiological studies [4–
6]. Meanwhile, evidence showed that Ni NPs might be more carcinogenic than Ni fine particles
[7]. Park et al reported that 100 nm Ni particles could induce apoptosis and DNA damage by
promoting the production of ROS [8,9]. Zhao et al demonstrated that Ni NPs could induce
more cell apoptosis than Ni fine particles in JB6 cells at the same dose, and Ni NPs could also
significantly up-regulate the protein expression levels of the proto-oncogene Bcl-2 and anti-
apoptotic factor AKT [10]. In addition, Pietruska et al found that Ni NPs activated the HIF-1α
signaling pathway, which could induce cell malignant transformation [11]. Another study in
vivo showed that the formation of rhabdomyosarcomas was observed in rats through intramus-
cular injection with Ni NPs at the vertebral column [12]. Although our previous studies had
demonstrated that Ni NPs might be more harmful than Ni fine particles [13], the carcinogenic
cytotoxicity of Ni NPs and the underlying molecular mechanism are still unclear.

EGCG is a major component of polyphenols in green tea [14,15]. It has inhibitory effects on
cell transformation and early cancerization, ROS generation and DNA damage induced by
inflammation [16,17]. Previous studies of the nude mouse tumorigenicity assay suggested that
EGCGmight effectively inhibit the growth of prostate cancer cells via intraperitoneal injection
[18]. Additionally, Wing et al found that EGCG could promote the apoptosis of human liver can-
cer cells by up-regulating the expression levels ofmiR-16 and down-regulating the expression lev-
els of Bcl-2 [19]. The possible mechanismmight be that EGCG could inhibit liver cancer cells
proliferation through up-regulation of P53 expression and activation of Fas/FasL signaling path-
ways [20]. Available studies also suggested that the potential anti-carcinogenic mechanism of
EGCGmight involve the MAPK, JAK/STAT, PI3K/AKT,Wnt and Notch signaling pathways
[21]. In addition, EGCGmight inhibit the tumorigenesis through down-regulation of the activa-
tions of protein kinases, transcription factors (AP-1 and NF-κB) and growth factor receptors [21].

Therefore, we attempted to identify the inhibitory effects and the potential molecular mech-
anism of EGCG on Ni NPs-induced cytotoxicity in this study.

Materials and Methods

Materials
Ni NPs (the main components: 99.8% Ni, 0.01% Co and 0.0068% Ca) were purchased from
Danyang City Alloy and Steel Refinery Co, LTD (Danyang, Jiangsu, China). EGCG (from
green tea, E4143, purity> 95%) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide (MTT) were purchased from Sigma-Aldrich1 (Saint Louis, Missouri, USA). The JB6
cells (a mouse epidermal cell line) were received as a gift from the National Institute of Occupa-
tional Safety and Health (Morgantown, West Virginia, USA). The kits for bicinchoninic acid
(BCA) protein quantitation and the ROS detection were purchased from Beyotime Institute of
Biotechnology (Shanghai, China). The cell cycle kit was purchased fromMultiSciences Biotech
Co, Ltd. (Hangzhou, Zhejiang, China). The Annexin V-FITC/PI apoptosis detection kit was
supplied by Invitrogen Corporation (Carlsbad, California, USA). Mouse-anti-human GAPDH
monoclonal antibody was obtained from KangChen Bio-tech Inc. (Shanghai, China). The rab-
bit-anti-human monoclonal antibodies including p-ERK1/2 (phosphorylated ERK1/2), ERK1/
2, p-p38 (phosphorylated p38), p38, p-JNK (phosphorylated JNK) and JNK were obtained
from Cell Signaling Technology (Danfoss, Massachusetts, USA). Luciferase assay system and
TPA (phorbol-12-myristate-13-acetate) were purchased from Promega Corporation (Madison,
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Wisconsin, USA). The fluorescent protectant (Flu-G) was supplied by Southern Biotechnology
Associates (Birmingham, Alabama, USA). The pre-dyed protein marker was purchased from
Fermentas Inc. (Republic of Lithuania). Western Bright™ ECL was purchased from Asvansta
Inc. (Menlo Park, California, USA). All other materials were obtained from Solarbio1 (Bejing,
China), Beyotime1 (Shanghai, China), Sigma-Aldrich1 (St. Louis, Missouri, USA), Molecular
Probes1 (Eugene, Oregon, USA) and Amresco1 (Solon, Ohio, USA), respectively.

Methods
Preparation and physical characteristic detection of Ni NPs. Ni NPs (10 mg) were

added into a sterile glass bottle containing sterile culture medium (10 mL), then sealed with
joint sealant and sonicated for 30 min in an ultrasonic water bath apparatus. Then, the Ni NPs
were distributed evenly in culture medium (1 μg/μL). A scanning electron microscope (SEM)
was used to evaluate the physical characteristics of the Ni NPs.

Cell culture. The JB6 cells were maintained in 10% bovine calf serum DMEM containing
1% penicillin-streptomycin at standard culture conditions (37°C, 80% humidified air and 5%
CO2). For all treatments, cells were grown to 80% confluence.

Cytotoxicity assay. Cytotoxicity of Ni NPs to JB6 cells and the inhibition effect of EGCG
were assessed by the MTT assay. Briefly, the JB6 cells were plated at a density of 10,000 cells/
well in a 96-well plate with 100 μL culture medium per well. The cells were maintained at stan-
dard culture conditions for 24 h, and then treated with Ni NPs alone or Ni NPs + EGCG (the
concentrations of Ni NPs: 0, 2.5, 5, 7.5 and 10 μg/cm2; the concentration of EGCG: 10 μM).
After 24 h incubation, the culture medium was removed and the wells were washed lightly with
sterile PBS, then 20 μL MTT solution (3.5 mg/mL) and 180 μL fresh culture medium were
added in each well. The plates were further incubated for 4 h. Next, 150 μL DMSO was added
into each well and the two plates were incubated on an incubator shaker for 10 min at 37°C.
The optical density (OD) of each well was measured at the wavelength of 492 nm.

Detection of cell cycle. A cell cycle kit was used to detect the cell cycle of JB6 cells. Briefly,
cells were seeded into two 6-well plates for 24 h, then treated with Ni NPs alone or Ni NPs
+ EGCG for 24 h. Cells were washed two times with 4°C sterile PBS, and harvested by trypsini-
zation. After centrifugation, cell pellets were resuspended in fresh DMEMmedium. PI (propi-
dium iodide) dye was added into the cell suspension and cells were further incubated for 30
min, avoiding light. The cell cycle was monitored by flow cytometry.

Detection of apoptosis. An AnnexinV-FITC/PI kit was used to detect cell apoptosis.
Briefly, cells were collected, which was similar to the cell cycle detection. Cells were gently
added to a flow cytometry tube containing 500 μL Annexin binding buffer. Then, 5 μL Annex-
inV-FITC and 1 μL PI dye were added into the cell suspension and incubated for 30 min,
avoiding light. Apoptosis was monitored by flow cytometry.

Determination of free radical formation. Cells were grown on a glass coverslip, and then
treated with Ni NPs alone or Ni NPs + EGCG for 24 h. Then, the cells were immobilized with
90% ethanol on ice. A 200 μL solution containing H2DCFDA (5 μM), DHE (2 μM), and
Hoechst33258 (3 μM) were added onto the cover slip. After 1 h incubation in the dark on ice,
cells were washed gently 3 times with 4°C sterile PBS. Finally, a drop of Flu-G was dropped
onto each glass coverslip, covered with a glass slide, and sealed around the edges. The images of
intracellular ROS generation were captured with a confocal laser scanning microscope.

The intracellular ROS levels were detected by a reactive oxygen species assay kit. The JB6
cells were maintained at a density of 10,000 cells/well in a 96-well black plate. After different
treatments, cells were washed 3 times with 37°C sterile PBS, and then incubated with 10 μM
H2DCFDA on an incubator shaker at 37°C for 25 min. The fluorescence distribution was
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detected by a fluorospectrophotometer at an excitation wavelength of 488 nm and an emission
wavelength of 525 nm.

Detection of luciferase activity. The JB6 cells transfected with AP-1 or NF-κB gene
reporters (a gift from NIOSH) were used to detect luciferase activity of AP-1 or NF-κB. A 2 mL
cell suspension (1×105 cell/mL) was seeded into a 24-well plate and maintained at standard cul-
ture conditions for 24 h. Cells were incubated in 0.1% FBS DMEM at standard culture condi-
tions (37 °C, 80% humidified air and 5% CO2) for 24 h. Then, cells were treated with Ni NPs
alone or Ni NPs + EGCG for 24 h. Cells exposed to 20 nM TPA were used as a positive control.
Cells were lysed with 1×cell lysis buffer (120 μL) for 1 h and then the lysate was centrifuged for
20 min at 12,000 rpm, 4°C. A sample of supernatant (20 μL) and Promega test reagents
(100 μL: luciferase assay substrate mixed with luciferase assay buffer) were transferred into
dedicated centrifuge tubes. After mixing well, the luciferase activity of AP-1 or NF-κB was
detected following the manufacturer’s instruction.

Western blot analysis. After seeding into two 6-well plates and cultured for 24 h, cells
were treated Ni NPs alone or Ni NPs + EGCG for 24 h. Then, cells were washed twice with
cold PBS. A 60 μL mixture of EDTA-free, PMSF and NP-40 was added into each well to lyse
cells on ice for 1 h, and then the lysate was centrifuged at 12000 rpm, 4°C for 25 min. Protein
concentrations in the supernatants were determined using the bicinchoninic acid method.
Equal amounts of protein were separated by 6% and 10% polyacrylamide gels. Immunoblots
for expressions of AP-1, NF-κB, JNK, p-JNK, ERK1/2, p-ERK1/2, p38, p-p38, and GAPDH
were detected. Equal amounts of protein were ensured by measuring GAPDH. A gel imaging
processing system was used for western blot analysis.

Statistical analysis. Every experiment was performed three or more times and the data
were presented as means ± standard errors (�x ± SE) of the number of experiments/samples.
Data were analyzed using T-test or One-way ANOVA analysis by SPSS16.0 and SAS9.1. Signif-
icance was set at P�0.05.

Results

Physical characteristics of the Ni NPs
The results detected by SEM showed that the size of Ni NPs was 40.50 ± 18.6 nm, and the
mean surface area was 28 m2/g (Table 1, Fig 1).

Cell viability and morphological changes
Significant cell viability reduction and toxic morphological changes were observed in Figs 2
and 3. Following 7.5 and 10 μg/cm2 Ni NPs exposure, the number of surviving cells showed a
significant difference between Ni NPs alone and Ni NPs + EGCG treatments.

Cell cycle analysis
After 2.5 and 5 μg/cm2 Ni NPs treatment alone, obvious G0/G1 phase arrest was detected.
With each increase of Ni NPs concentration, G0/G1 phase arrest declined accompanying with

Table 1. Physical characteristic of Ni NPs

Sample Particle size (nm,x ± SE) Surface area (m2/g)

Ni NPsa 40.50 ± 18.6 28

aNi NPs, nickel nanoparticles

doi:10.1371/journal.pone.0150954.t001
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a significant increase of G2/M phase arrest. Addition of 10 μMEGCG resulted in a significantly
increase in G0/G1 phase arrest and a decrease in G2/M phase arrest in the 7.5 and 10 μg/cm2

Ni NPs treatment groups. (As shown in Fig 4 and S1 Fig.)

Cell apoptosis
As shown in Fig 5 and S2 Fig, with increase Ni NPs concentration, apoptotic cells increased
and 10 μM EGCG could only significantly inhibit cell apoptosis in the 2.5 and 5 μg/cm2 Ni NPs
treatment groups.

Fig 1. Image of nickel nanoparticles captured by scanning electron microscopy.

doi:10.1371/journal.pone.0150954.g001

Fig 2. Morphological changes after cells were treated with Ni NPs alone or Ni NPs + EGCG.Note: Magnification of the light microscope was at 20×.
Abbreviations: Ni NPs, nickel nanoparticles; EGCG, epigallocatechin-3-gallate.

doi:10.1371/journal.pone.0150954.g002
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ROS generation
The results showed that Ni NPs induced intracellular ROS generation in a dose-dependent
manner and the intracellular ROS could be significantly reduced by EGCG (Figs 6 and 7).

Luciferase activities of AP-1 and NF-κB
As shown in Fig 8, Ni NPs alone could induce AP-1 and NF-κB luciferase activity. A supple-
ment of 10 μM EGCG showed a significant inhibition on Ni NPs-induced AP-1 and NF-κB
luciferase activity, especially in the 2.5 and 5 μg/cm2 Ni NPs treatment groups.

MAPK signaling protein expressions
As shown in Fig 9, the inhibitory effects of EGCG on Ni NPs-induced p-ERK1/2, p-JNK and p-
p38 protein up-regulation were only observed in the 2.5 and 5 μg/cm2 Ni NPs treatment
groups.

Fig 3. Cell viability after cells were treated with Ni NPs alone or Ni NPs + EGCG.Note: *P<0.05, Ni NPs
alone compared with Ni NPs + EGCG; ++ P<0.01, +++ P<0.001, compared with control—(without any
treatment); ## P<0.01, ### P<0.001, compared with control + 10 μMEGCG; error bars, SE. Abbreviations: Ni
NPs, nickel nanoparticles; EGCG, epigallocatechin-3-gallate.

doi:10.1371/journal.pone.0150954.g003

Fig 4. Cell cycle analysis after cells were treated with Ni NPs alone or Ni NPs + EGCG.Notes: * P<0.05, *** P<0.001, Ni NPs alone compared with Ni
NPs + EGCG; ++ P<0.01, +++ P<0.001, compared with control—(without any treatment); ###, P<0.001, compared with control + 10 μMEGCG; error bars,
SE. Abbreviations: Ni NPs, nickel nanoparticles; EGCG, epigallocatechin-3-gallate.

doi:10.1371/journal.pone.0150954.g004
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Discussion
Our results indicate that Ni NPs caused a dose-dependent decrease in cell viability accompa-
nying with a significant increase in intracellular ROS generation and apoptosis. A supplement
of 10 μM EGCG shows a definite inhibition on Ni NPs-induced toxicity, especially in the 2.5
and 5 μg/cm2 groups. Also, 10 μM EGCG showed a significant inhibition on AP-1 and NF-κB
luciferase activity, as well as on MAPK signaling protein expressions (p-ERK1, p-JNK or p-
p38) in the 2.5 and 5 μg/cm2 groups.

The cell cycle can be divided into four stages, known as G0/G1 (the early stage of DNA syn-
thesis), G2 (the later stage of DNA synthesis), M (the stage of mitosis), and S (the stage of
DNA synthesis). To our knowledge, the G0/G1 phase is the key that starts the cell cycle. If the
cell cycle is arrested at G0/G1 phase, cells will not be able to enter into the stage of mitosis and
cell proliferation, eventually leading to apoptosis. The G2/M phase arrest can be caused by

Fig 6. Oxidative stress staining after JB6 cells were treated with Ni NPs alone or Ni NPs + EGCG.Notes: H2DCFDA (green) and DHE (red) are used for
staining general ROS and •O2

- produced in the intact cells, respectively. Hoechst 33258 (blue) is a nucleic acid stain. 500 μMH2O2 was used as a positive
control for ROS generation. Abbreviations: Ni NPs, nickel nanoparticles; EGCG, epigallocatechin-3-gallate; H2DCFDA, 2',7'-dichlorodihydrofluorescein
diacetate; DHE, dihydroethidium; ROS, reactive oxygen species.

doi:10.1371/journal.pone.0150954.g006

Fig 5. Comparison of apoptotic cell number§ after cells were treated with Ni NPs alone or Ni NPs
+ EGCG.Notes: §including early and late-stage apoptotic cells; *** P<0.001, Ni NPs alone compared with Ni
NPs + EGCG; +++ P<0.001, compared with control—(without any treatment); # P<0.05, ### P<0.001,
compared with control + 10 μMEGCG; error bars, SE. Abbreviations: Ni NPs, nickel nanoparticles; EGCG,
epigallocatechin-3-gallate.

doi:10.1371/journal.pone.0150954.g005

Epigallocatechin-3-Gallate Inhibits Nickel Nanoparticles-Induced Toxicity

PLOS ONE | DOI:10.1371/journal.pone.0150954 March 4, 2016 7 / 12



physical and chemical factors inducing DNA damage [22]. Ahmad et al reported that Ni NPs
(28 nm; concentration range, 25–100 μg/mL) induced oxidative stress in a dose-dependent
manner accompanying with ROS generation, subG1 arrest and DNA damage [23]. Similar to
the results above, we found that 2.5 and 5 μg/cm2 Ni NPs could induce the G0/G1 phase arrest,
and 7.5 and 10 μg/cm2 Ni NPs could induce the G2/M phase arrest. These results suggest that
2.5 and 5 μg/cm2 Ni NPs induced cell apoptosis, whereas 7.5 and 10 μg/cm2 Ni NPs might
cause cell necrosis through DNA damage. Addition of 10 μM EGCG can result in G0/G1 phase
arrest in the 7.5 and 10 μg/cm2 groups. This may suggest that EGCG can reduce oxidative
stress-mediated DNA damage and cell necrosis.

Apoptosis is an initiative action of cells to implement programmed death [24]. It is caused
by a series of physiological and pathological signals. Under the regulation of the death related
genes, death receptor pathways are activated, including the membrane receptor pathway, cyto-
chrome c pathway and caspase pathway [25–27]. Our results showed that Ni NPs induced cell
apoptosis in a dose-dependent manner at low concentrations (2.5 and 5 μg/cm2). The inhibi-
tory effect of EGCG on Ni NPs-induced cell apoptosis was only observed in the 2.5 and 5 μg/
cm2 groups. This implies that 10 μMEGCG could only quench the apoptotic effects at low con-
centration of Ni NPs.

Normally, intracellular ROS generation and quenching are in a dynamic balance state.
Harmful factors may break this balance, resulting in excessive generation of ROS beyond the

Fig 7. ROS levels after JB6 cells were treated with EGCG alone, Ni NPs alone or Ni NPs + EGCG.
Notes: ** P<0.01, *** P<0.001, Ni NPs alone compared with Ni NPs + EGCG; +++ P<0.001, compared with
control (without any treatment); ###, P<0.001, compared with control + 10 μMEGCG; error bars, SE.
Abbreviations: Ni NPs, nickel nanoparticles; EGCG, epigallocatechin-3-gallate.

doi:10.1371/journal.pone.0150954.g007

Fig 8. Luciferase activity of AP-1 and NF-κB after JB6 cells were treated with Ni NPs alone or Ni NPs + EGCG. Notes: *P<0.05, Ni NPs alone
compared with Ni NPs + EGCG; + P<0.05, ++ P<0.01, +++ P<0.001, compared with control—(without any treatment); # P<0.01, ## P<0.01, ### P<0.001,
compared with control + 10 μMEGCG. 20 nM TPA was set as a positive control. Abbreviations: Ni NPs, nickel nanoparticles; EGCG, epigallocatechin-
3-gallate; TPA, phorbol ester.

doi:10.1371/journal.pone.0150954.g008
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scavenging ability of intracellular antioxidant system, and then inducing DNA damage and
abnormal expression of proteins. As an antioxidant, the effect of EGCG on ROS generation is
biphasic. The low dose of EGCG can reduce the level of intracellular ROS. However, the high
dose of EGCG can induce ROS generation [28]. This study showed that Ni NPs could induce
intracellular ROS generation in a dose-dependent manner and EGCG could significantly
reduce it. Meanwhile, 10 μM EGCG showed no significant ROS generation to JB6 cells. These
results suggested that oxidative stress injury played an important role in Ni NPs-induced cell
apoptosis and EGCG could inhibit the toxicity by removing excessive ROS.

AP-1 is a common intracellular transcription activator [29]. Previous studies have shown
that AP-1 participates in many important cellular activities, including cell differentiation, cell
proliferation and apoptosis [30,31]. In addition, the up-regulation of AP-1 has also been found
to be related to tumorigenesis [32,33]. Similar to AP-1, NF-κB has also been found to be related
to tumorigenesis, inflammation and autoimmune diseases [34–36]. In previous studies, we
found that compared to fine nickel particles, Ni NPs are more likely to up-regulate the expres-
sion levels of AP-1 and NF-κB. In this study, we found that a supplement of 10 μM EGCG
could partially down-regulate the expression levels of AP-1 and NF-κB. These results suggest
that EGCGmight have inhibitory effects on Ni NPs-induced carcinogenicity.

To explore the mechanism of the changes of AP-1 and NF-κB, we further detected the
expression levels of MAPK signal proteins. The MAPK signaling pathways family includes
ERKl/2, JNK, p38, and ERK5, etc. They can be activated by UV, growth factors, cytokines, and
DNA damaging agents [37,38]. The MAPK signaling pathways are involved in cell differentia-
tion, apoptosis and inflammation. ERK1/2 can be activated by phosphorylation to regulate
some nuclear transcription factors such as c-fos, c-Jun, Elk-1, c-myc, and ATF2, which are
involved in cell proliferation and cell differentiation. JNK can also be activated by phosphoryla-
tion to activate c-Jun and then to up-regulate the transcription activity of AP-1. After p38 has

Fig 9. Expression levels of MAPK signal pathway proteins after cells were treated with Ni NPs alone or Ni NPs + EGCG.Notes: *P<0.05, **P<0.01,
***P<0.001, Ni NPs alone compared with Ni NPs + EGCG; ++ P<0.01, +++ P<0.001, compared with control—(without any treatments); ## P<0.01, ###
P<0.001, compared with control + 10 μMEGCG. Abbreviations: Ni NPs, nickel nanoparticles; EGCG, epigallocatechin-3-gallate.

doi:10.1371/journal.pone.0150954.g009
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been activated by phosphorylation, IκB can be phosphorylated and cleaved, thus leading to
depolymerization of IκB and NF-κB, and eventually resulting in nuclear migration and the
releasing and activation of NF-κB. In this study, Ni NPs induced significant up-regulation of
protein expressions of p-JNK, p-ERK1/2 and p-p38. EGCG could inhibit the up-regulation of
protein expressions of p-JNK, p-ERK1/2 and p-p38, especially in the 2.5 and 5 μg/cm2 groups.
This was consistent with the fact that EGCG could inhibit the up-regulation of AP-1 and NF-
κB luciferase activity induced by Ni NPs.

Taken together, our results suggest that Ni NPs could induce intracellular ROS generation
and result in up-regulation of the transcriptional level of AP-1 and NF-κB through the MAPK
signaling pathways which might be contributed to cell apoptosis, necrosis and carcinogenesis.
Inhibition of EGCG on Ni NPs-induced cytotoxicity in JB6 cells might be through the MAPK
signaling pathways indicating that EGCGmight be useful in preventing Ni NPs-induced toxicity.

Limitation
Although EGCG is an antioxidant, it could produce ROS when added to the cell culture
medium for the reason of auto-oxidation. In this study, we found that 10 μM EGCG could
reduce Ni NPs-induced toxicity and no obvious ROS generation under its treatment alone was
observed. Previous evidence showed that addition of SOD and catalase to the medium simulta-
neously could prevent the generation of ROS induced by the auto-oxidation of EGCG [39].
Therefore, future studies will be necessary to determine whether these enzymes can enhance
the inhibitory effects of EGCG on Ni NPs-induced toxicity. Besides, EGCG inhibition on Ni
NPs-induced toxicity was only evaluated by in vitro experiments in this study. The data
obtained from our in vitro studies may not be enough to thoroughly evaluate the inhibitory
effect of EGCG on Ni NPs-induced toxicities. The study of Zhou H et al indicates that the pre-
ventive mechanism of EGCG in vivo is obviously different from that found in vitro [40]. Thus,
further in vivo experiments will be absolutely necessary to explore the toxicokinetics effect of
Ni NPs and the pharmacodynamics effect of EGCG.

Supporting Information
S1 Fig. Cell cycle analysis after cells were treated with Ni NPs alone or Ni NPs + EGCG.
Abbreviations: Ni NPs, nickel nanoparticles; EGCG, epigallocatechin-3-gallate
Note: S1 Fig is the result of cell cycle analysis detected by flow cytometry to support Fig 4.
(TIF)

S2 Fig. Cell apoptotic induction after treatments with Ni NPs alone or Ni NPs + EGCG.
Abbreviations: Ni NPs, nickel nanoparticles; EGCG, epigallocatechin-3-gallate
Notes: S2 Fig is the result of cell apoptotic detected by flow cytometry to support Fig 5. The
upper left quadrant (UL) was PI+/Annexin V-, representing mechanical-induced cell damage
and late cell death; the lower left quadrant (LL) was PI-/Annexin V-, representing normal cells;
the upper right quadrant (UR) was PI+/Annexin V+, representing late-stage apoptotic cells;
the lower right quadrant (LR) was PI-/Annexin V+, representing the early-stage apoptotic
cells.
(TIF)
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